如何进行条件分支预测器实验
背景
最近针对各种条件分支预测器(Conditional Branch Predictor)做了在各种 benchmark 上的实验,在此记录一下做这个实验的流程。
最近针对各种条件分支预测器(Conditional Branch Predictor)做了在各种 benchmark 上的实验,在此记录一下做这个实验的流程。
TLS 是 thread local storage 的缩写,可以很方便地存储一些 per-thread 的数据,但它内部是怎么实现的呢?本文对 glibc 2.31 版本的 TLS 实现进行探究。
在 V8 Ignition 解释器的内部实现探究 中探究了 JavaScript 引擎 V8 的解释器的实现,接下来分析一下 Android Runtime (ART) 的解释器,其原理也是类似的。本博客在 ARM64 Ubuntu 24.04 平台上针对 Android Runtime (ART) 15.0.0 r1 版本进行分析。
V8 是一个很常见的 JavaScript 引擎,运行在很多的设备上,因此想探究一下它内部的部分实现。本博客在 ARM64 Ubuntu 24.04 平台上针对 V8 12.8.374.31 版本进行分析。本博客主要分析了 V8 的 Ignition 解释器的解释执行部分。
之前用了一段时间飞书日历,想要把日历里的事件导出来备份,但是发现飞书自己的导出功能太弱,因此参考 从飞书导出日历到 Fastmail - Xuanwo's Blog 进行了导出的尝试。
之前 测试了 Intel Alder Lake 的 P 核微架构,这次就来测一下 Alder Lake 的 E 核微架构 Gracemont。
前段时间测试了 AMD/Apple/Qualcomm/ARM 的处理器的微架构,自然不能漏了 Intel。虽然 Intel 已经出了 Redwood Cove 和 Lion Cove,但手上没有设备,而且 Golden Cove 也是“相对比较成功”(“缩缸的是 Raptor Cove,和我 Golden Cove 有什么关系,虽然其实 Raptor Cove 是 Golden Cove Refresh”)的一代微架构,用在了 Alder Lake 和 Sapphire Rapids 上,因此就来分析它,后续有机会也会分析一下对应的 E 核架构 Gracemont。
最近做了不少微架构的评测,其中涉及到了很多的 CPU 微架构的逆向:
因此总结一下 CPU 微架构逆向方法学。
虽然 Apple M1 已经是 2020 年的处理器,但它对苹果自研芯片来说是一个里程碑,考虑到 X Elite 处理器的 Oryon 微架构和 Apple M1 性能核 Firestorm 微架构的相似性,还是测试一下这个 Firestorm + Icestorm 微架构在各个方面的表现。Apple A14 采用了和 Apple M1 一样的微架构。
最近使用 Linux 的性能分析功能比较多,但是很少去探究背后的原理,例如硬件的 PMU 是怎么配置的,每个进程乃至每个线程级别的 PMU 是怎么采样的。这篇博客尝试探究这背后的原理。
Disqus 要加广告了,于是本博客的评论系统迁移到了 Giscus。
ARM Neoverse V2 是目前(2024 年)在服务器上能用到的最新的 ARM 公版核平台(AWS Graviton 4),测试一下这个微架构在各个方面的表现。
ISCA 2020 的一篇文章 The IBM z15 High Frequency Mainframe Branch Predictor Industrial Product 非常详细地解析了 IBM z15 Mainframe CPU 的分支预测器设计。本文是对这篇论文的学习和整理的笔记。
ISCA 2020 的一篇文章 Evolution of the Samsung Exynos CPU Microarchitecture 非常详细地解析了三星 Exynos 自研 CPU 微架构的演进历史。本文是对这篇论文的学习和整理的笔记。
最近借到一台 Surface Laptop 7 可以拿来折腾,它用的是高通 Snapdragon X Elite 处理器,借此机会测试一下这个微架构在各个方面的表现。
随着 Zen 5 的推出,更多 Zen5 的架构设计细节被公开,可以看到 Zen 5 前端出现了令人瞩目的变化:引入了 2-taken, 2-ahead 分支预测的设计。这是什么意思?它架构上是怎么实现的?可以带来哪些性能提升?
最近借到一台 Surface Laptop 7 可以拿来折腾,它用的是高通 Snapdragon X Elite 处理器,跑的是 Windows on Arm 系统。但作为 Linux 用户,肯定不满足于 WSL,而要裸机上安装 Linux。由于这个机器太新,所以安装的过程遇到了很多坎坷。
这个系列的前三篇博客实现了一个简单的静态链接器,它可以输入若干个 ELF .o 文件,输出 ELF 可执行文件或者动态库。接下来,我们要进一步支持动态库,不仅可以生成动态库,还支持让动态库参与到静态链接当中。
这个系列的前两篇博客实现了一个简单的静态链接器,它可以输入若干个 ELF .o 文件,输出 ELF 可执行文件。接下来,我们进一步支持动态库:输入若干个 ELF .o 文件,输出 ELF 动态库。
这个系列的第一篇博客实现了一个最简单的静态链接器,它可以输入单个 ELF .o 文件,输出 ELF 可执行文件。接下来,我们需要把它升级到支持输入两个或者更多的 ELF .o 文件。