<HUAWEI>save
The current configuration will be written to flash:/vrpcfg.zip.
Are you sure to continue?[Y/N]y
Now saving the current configuration to the slot 0....
Save the configuration successfully.
[HUAWEI]snmp-agent sys-info version all
Warning: This command may cause confliction in netconf status. Continue? [Y/N]:y
Warning: SNMPv1/SNMPv2c is not secure, and it is recommended to use SNMPv3.
[HUAWEI]snmp-agent community read [COMMUNITY NAME]
Warning: This command may cause confliction in netconf status. Continue? [Y/N]:y
[HUAWEI]snmp-agent mib-view included iso-view iso
Warning: This command may cause confliction in netconf status. Continue? [Y/N]:y
[HUAWEI]snmp-agent community read [COMMUNITY NAME] mib-view iso-view
console#copy running-config startup-config
This operation may take few minutes.
Management interfaces will not be available during this time.
Are you sure you want to save? (y/n) y
Configuration Saved!
[switch]save
The current configuration will be written to the device. Are you sure? [Y/N]:y
Please input the file name(*.cfg)[flash:/startup.cfg]
(To leave the existing filename unchanged, press the enter key):y
The file name is invalid(does not end with .cfg).
耳机插座里面,一般分三种组成部件:Tip,Ring,Sleeve。只有两段的是 TS,三段的是 TRS,四段的是 TRRS。TS 是单声道,T 是声音,S 是地。TRS 是双声道,T 是左声道(或者单声道),R 是右声道,S 是地。TRRS 则是双声道加录音。一般来说,LINE IN 是双声道,MIC IN 是单声道,它们的阻抗也不同;LINE OUT 和 HEADPHONE OUT 都是双声道,但 HEADPHONE OUT 经过了额外的放大器。
<?xml version="1.0" encoding="UTF-8"?><!-- DO NOT EDIT THIS FILE! It will be replaced when MiKTeX is updated. Instead, edit the configuration file localfonts2.conf.--><fontconfig><include>localfonts2.conf</include><dir>/Library/Fonts/</dir><dir>/System/Library/Fonts/</dir><dir>~/Library/ApplicationSupport/MiKTeX/texmfs/install/fonts/type1</dir><dir>~/Library/ApplicationSupport/MiKTeX/texmfs/install/fonts/opentype</dir><dir>~/Library/ApplicationSupport/MiKTeX/texmfs/install/fonts/truetype</dir></fontconfig>
<?xml version="1.0"?><fontconfig><dir>/System/Library/PrivateFrameworks/FontServices.framework/Versions/A/Resources/Fonts/Subsets</dir><!-- REMOVE THIS LINE<dir>Your font directory here</dir><dir>Your font directory here</dir><dir>Your font directory here</dir> REMOVE THIS LINE --></fontconfig>
Common symbols are a feature that allow a programmer to 'define' several variables of the same name in different source files. This is in contrast with the more popular way of doing, where you define a variable once in a source file, and reference it everywhere else in other source files, using extern. When common symbols are used, the linker will merge all symbols of the same name into a single memory location, the size of which is the largest type of the individual common symbol definitions. For example, if fileA.c defines an uninitialized 32-bit integer myint, and fileB.c defines an 8-bit char myint, then in the final executable, references to myint from both files will point to the same memory location (common location), and the linker will reserve 32 bits for that location.
可以看到,在 MAIN 中引用 A 的时候,取的地址是 ___BLNK__+4,R 是 ___BLNK__+0,F 是 ___BLNK__+8。这和代码里的顺序也是一致的。所以在 SUB 中读 A I B 的时候,对应了 MAIN 中的 A R F。通过这种方式,可以在 MAIN 函数里面隐式地给所有函数传递参数。
// When valid goes high, data is stable and valid stays high before readywhen(past(stream.valid&&~stream.ready&&~outerReset)){slaveAssume(stream.valid);if(dataStable){slaveAssume(stable(stream.payload.asBits));}}
2: 在 reset 释放的第一个周期里,valid 不能为高:
参考 AXI 标准 (IHI0022E Page 38 A3.1.2) 原文:
The earliest point after reset that a master is permitted to begin driving ARVALID, AWVALID, or WVALID HIGH is at a rising ACLK edge after ARESETn is HIGH.
// Valid is low in the first cycle after reset fallswhen(pastValid&&past(outerReset)&&~outerReset){slaveAssume(~stream.valid);}
The data rate, if only a number, is in Mb/s, and if suffixed by a “G”, is in
Gb/s. The modulation type (e.g., BASE) indicates how encoded data is
transmitted on the medium. The additional distinction may identify
characteristics of transmission or medium and, in some cases, the type of PCS
encoding used (examples of additional distinctions are “T” for twisted pair,
“B” for bidirectional optics, and “X” for a block PCS coding used for that
speed of operation). Expansions for defined Physical Layer types are included
in 1.4.
和 IEEE 802.3 1.4 节 Definitions 中的几个例子:
100BASE-T: IEEE 802.3 Physical Layer specification for a 100 Mb/s CSMA/CD local area network. (See IEEE Std 802.3, Clause 22 and Clause 28.)
100BASE-TX: IEEE 802.3 Physical Layer specification for a 100 Mb/s CSMA/CD local area network over two pairs of Category 5 twisted-pair cabling. (See IEEE Std 802.3, Clause 24 and Clause 25.)
1000BASE-T: IEEE 802.3 Physical Layer specification for a 1000 Mb/s CSMA/CD LAN using four pairs of Category 5 balanced copper cabling. (See IEEE Std 802.3, Clause 40.)
1000BASE-X: IEEE 802.3 Physical Layer specification for a 1000 Mb/s CSMA/CD LAN that uses a Physical Layer derived from ANSI X3.230-1994 (FC-PH) [B21]23. (See IEEE Std 802.3, Clause 36.)
2.5GBASE-T: IEEE 802.3 Physical Layer specification for a 2.5 Gb/s LAN using four pairs of Category 5e/Class D balanced copper cabling. (See IEEE Std 802.3, Clause 126.)
5GBASE-T: IEEE 802.3 Physical Layer specification for a 5 Gb/s LAN using four pairs of Category 5e/Class D balanced copper cabling. (See IEEE Std 802.3, Clause 126.)
10GBASE-T: IEEE 802.3 Physical Layer specification for a 10 Gb/s LAN using four pairs of Class E or Class F balanced copper cabling. (See IEEE Std 802.3, Clause 55.)
# for build.rscodesign-s-target/debug/build/*/build-script-build
# for dylib of some cratescodesign-s-target/debug/deps/*.dylib
# for final executablecodesign-s-target/debug/xxx
我是 11.12 的时候在 Apple Store 上下单的,选的是 MacBookAir,带 M1 芯片,8 核 CPU + 8 核 GPU,加了一些内存和硬盘。今天(11.19)的时候顺丰到货,比 Apple Store 上显示的预计到达时间 21-28 号要更早。另外,我也听朋友说现在一些线下的店也有货,也有朋友直接在京东上买到了 Mac mini,总之第一波 M1 的用户最近应该都可以拿到设备了。
现在这篇博客,就是在 ARM MBA 上编写的,使用的是 Intel 的 VSCode,毕竟 VSCode 的 ARM64 版不久后才正式发布。
Note: BMC Dashboard shows an incorrect level for the BIOS caused by improper translation of the level subfields. The Bios number should reflect the PNOR level for the system of "IBM-garrison-ibm-OP8_v1.11_2.19". In this case, the BIOS version should be 1.11_2.19 but shows as 1.17.19 instead with the "11_2" converted into the "17".
The Firmware Revision for the BMC firmware shows correctly as "2.13.58".
Here is an example output of the Dashboard with an errant BIOS Version:
Dashboard gives the overall information about the status of the device and remote server.
Device Information
Firmware Revision: 2.13.58
Firmware Build Time: Oct 26 2016 11:40:55 CDT
BIOS Version: 1.17.19
secp112r1 : SECG/WTLS curve over a 112 bit prime field
secp112r2 : SECG curve over a 112 bit prime field
secp128r1 : SECG curve over a 128 bit prime field
secp128r2 : SECG curve over a 128 bit prime field
secp160k1 : SECG curve over a 160 bit prime field
secp160r1 : SECG curve over a 160 bit prime field
secp160r2 : SECG/WTLS curve over a 160 bit prime field
secp192k1 : SECG curve over a 192 bit prime field
secp224k1 : SECG curve over a 224 bit prime field
secp224r1 : NIST/SECG curve over a 224 bit prime field
secp256k1 : SECG curve over a 256 bit prime field
secp384r1 : NIST/SECG curve over a 384 bit prime field
secp521r1 : NIST/SECG curve over a 521 bit prime field
prime192v1: NIST/X9.62/SECG curve over a 192 bit prime field
prime192v2: X9.62 curve over a 192 bit prime field
prime192v3: X9.62 curve over a 192 bit prime field
prime239v1: X9.62 curve over a 239 bit prime field
prime239v2: X9.62 curve over a 239 bit prime field
prime239v3: X9.62 curve over a 239 bit prime field
prime256v1: X9.62/SECG curve over a 256 bit prime field
sect113r1 : SECG curve over a 113 bit binary field
sect113r2 : SECG curve over a 113 bit binary field
sect131r1 : SECG/WTLS curve over a 131 bit binary field
sect131r2 : SECG curve over a 131 bit binary field
sect163k1 : NIST/SECG/WTLS curve over a 163 bit binary field
sect163r1 : SECG curve over a 163 bit binary field
sect163r2 : NIST/SECG curve over a 163 bit binary field
sect193r1 : SECG curve over a 193 bit binary field
sect193r2 : SECG curve over a 193 bit binary field
sect233k1 : NIST/SECG/WTLS curve over a 233 bit binary field
sect233r1 : NIST/SECG/WTLS curve over a 233 bit binary field
sect239k1 : SECG curve over a 239 bit binary field
sect283k1 : NIST/SECG curve over a 283 bit binary field
sect283r1 : NIST/SECG curve over a 283 bit binary field
sect409k1 : NIST/SECG curve over a 409 bit binary field
sect409r1 : NIST/SECG curve over a 409 bit binary field
sect571k1 : NIST/SECG curve over a 571 bit binary field
sect571r1 : NIST/SECG curve over a 571 bit binary field
c2pnb163v1: X9.62 curve over a 163 bit binary field
c2pnb163v2: X9.62 curve over a 163 bit binary field
c2pnb163v3: X9.62 curve over a 163 bit binary field
c2pnb176v1: X9.62 curve over a 176 bit binary field
c2tnb191v1: X9.62 curve over a 191 bit binary field
c2tnb191v2: X9.62 curve over a 191 bit binary field
c2tnb191v3: X9.62 curve over a 191 bit binary field
c2pnb208w1: X9.62 curve over a 208 bit binary field
c2tnb239v1: X9.62 curve over a 239 bit binary field
c2tnb239v2: X9.62 curve over a 239 bit binary field
c2tnb239v3: X9.62 curve over a 239 bit binary field
c2pnb272w1: X9.62 curve over a 272 bit binary field
c2pnb304w1: X9.62 curve over a 304 bit binary field
c2tnb359v1: X9.62 curve over a 359 bit binary field
c2pnb368w1: X9.62 curve over a 368 bit binary field
c2tnb431r1: X9.62 curve over a 431 bit binary field
wap-wsg-idm-ecid-wtls1: WTLS curve over a 113 bit binary field
wap-wsg-idm-ecid-wtls3: NIST/SECG/WTLS curve over a 163 bit binary field
wap-wsg-idm-ecid-wtls4: SECG curve over a 113 bit binary field
wap-wsg-idm-ecid-wtls5: X9.62 curve over a 163 bit binary field
wap-wsg-idm-ecid-wtls6: SECG/WTLS curve over a 112 bit prime field
wap-wsg-idm-ecid-wtls7: SECG/WTLS curve over a 160 bit prime field
wap-wsg-idm-ecid-wtls8: WTLS curve over a 112 bit prime field
wap-wsg-idm-ecid-wtls9: WTLS curve over a 160 bit prime field
wap-wsg-idm-ecid-wtls10: NIST/SECG/WTLS curve over a 233 bit binary field
wap-wsg-idm-ecid-wtls11: NIST/SECG/WTLS curve over a 233 bit binary field
wap-wsg-idm-ecid-wtls12: WTLS curve over a 224 bit prime field
Oakley-EC2N-3:
IPSec/IKE/Oakley curve #3 over a 155 bit binary field.
Not suitable for ECDSA.
Questionable extension field!
Oakley-EC2N-4:
IPSec/IKE/Oakley curve #4 over a 185 bit binary field.
Not suitable for ECDSA.
Questionable extension field!
brainpoolP160r1: RFC 5639 curve over a 160 bit prime field
brainpoolP160t1: RFC 5639 curve over a 160 bit prime field
brainpoolP192r1: RFC 5639 curve over a 192 bit prime field
brainpoolP192t1: RFC 5639 curve over a 192 bit prime field
brainpoolP224r1: RFC 5639 curve over a 224 bit prime field
brainpoolP224t1: RFC 5639 curve over a 224 bit prime field
brainpoolP256r1: RFC 5639 curve over a 256 bit prime field
brainpoolP256t1: RFC 5639 curve over a 256 bit prime field
brainpoolP320r1: RFC 5639 curve over a 320 bit prime field
brainpoolP320t1: RFC 5639 curve over a 320 bit prime field
brainpoolP384r1: RFC 5639 curve over a 384 bit prime field
brainpoolP384t1: RFC 5639 curve over a 384 bit prime field
brainpoolP512r1: RFC 5639 curve over a 512 bit prime field
brainpoolP512t1: RFC 5639 curve over a 512 bit prime field
SM2 : SM2 curve over a 256 bit prime field
第二步,由于 Bob 只收到光子,不知道 Alice 选取的基底信息,而且只能用一个基测量一次,所以 Bob 随机从两种基选择一个来测量,得到了一串二进制。这些二进制里,如果 Alice 和 Bob 选取了同一个基,那么这一位的数据一定是对的;如果选取了不同的基,那么这一位有一半的可能是对的。总的来说,期望有四分之一的位是不正确的。
第三步,Alice 和 Bob 在 可信 的经典信道中把双方的基底进行对比,把基底相等的部分对应的二进制位提取出来,作为最终使用的密钥。
第四步,Alice 和 Bob 在最终使用的密钥中抽取若干位,然后对比,如果这些位都一致,则这个密码是有效的。如果错误率太高,那么很大概率是被攻击了。
假如在量子信道中间有一个 Eve 想要做坏事,它如果在中间观测了一下光子,它就会影响光子的量子态,导致 Bob 的密钥和 Alice 密钥会不一致,从而在协议的第四步被发现。并且,因为 Eve 并不知道 Alice 所使用的基底(假设 Eve 只能控制量子信道、不能控制经典信道),所以得到的二进制数据也有四分之一是不正确的。即使 Eve 尝试截获并且重发光子给 Bob,Bob 得到的密钥仍然有很高的错误率。通过这个错误率,就可以判断是否被攻击了。